Incomparable, non-isomorphic and minimal Banach spaces
Christian Rosendal
Fundamenta Mathematicae, Tome 184 (2004), p. 253-274 / Harvested from The Polish Digital Mathematics Library

A Banach space contains either a minimal subspace or a continuum of incomparable subspaces. General structure results for analytic equivalence relations are applied in the context of Banach spaces to show that if E₀ does not reduce to isomorphism of the subspaces of a space, in particular, if the subspaces of the space admit a classification up to isomorphism by real numbers, then any subspace with an unconditional basis is isomorphic to its square and hyperplanes, and the unconditional basis has an isomorphically homogeneous subsequence.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283048
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-5,
     author = {Christian Rosendal},
     title = {Incomparable, non-isomorphic and minimal Banach spaces},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {253-274},
     zbl = {1078.46006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-5}
}
Christian Rosendal. Incomparable, non-isomorphic and minimal Banach spaces. Fundamenta Mathematicae, Tome 184 (2004) pp. 253-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-5/