Homological computations in the universal Steenrod algebra
A. Ciampella ; L. A. Lomonaco
Fundamenta Mathematicae, Tome 184 (2004), p. 245-252 / Harvested from The Polish Digital Mathematics Library

We study the (bigraded) homology of the universal Steenrod algebra Q over the prime field ₂, and we compute the groups Hs,s(Q), s ≥ 0, using some ideas and techniques of Koszul algebras developed by S. Priddy in [5], although we presently do not know whether or not Q is a Koszul algebra. We also provide an explicit formula for the coalgebra structure of the diagonal homology D(Q)=s0Hs,s(Q) and show that D⁎(Q) is isomorphic to the coalgebra of invariants Γ introduced by W. Singer in [6].

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283351
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-4,
     author = {A. Ciampella and L. A. Lomonaco},
     title = {Homological computations in the universal Steenrod algebra},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {245-252},
     zbl = {1069.55014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-4}
}
A. Ciampella; L. A. Lomonaco. Homological computations in the universal Steenrod algebra. Fundamenta Mathematicae, Tome 184 (2004) pp. 245-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-4/