We study the (bigraded) homology of the universal Steenrod algebra Q over the prime field ₂, and we compute the groups , s ≥ 0, using some ideas and techniques of Koszul algebras developed by S. Priddy in [5], although we presently do not know whether or not Q is a Koszul algebra. We also provide an explicit formula for the coalgebra structure of the diagonal homology and show that D⁎(Q) is isomorphic to the coalgebra of invariants Γ introduced by W. Singer in [6].
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-4,
author = {A. Ciampella and L. A. Lomonaco},
title = {Homological computations in the universal Steenrod algebra},
journal = {Fundamenta Mathematicae},
volume = {184},
year = {2004},
pages = {245-252},
zbl = {1069.55014},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-4}
}
A. Ciampella; L. A. Lomonaco. Homological computations in the universal Steenrod algebra. Fundamenta Mathematicae, Tome 184 (2004) pp. 245-252. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-4/