Under very mild assumptions, any Lipschitz continuous conjugacy between the closures of the postcritical sets of two C¹-unimodal maps has a derivative at the critical point, and also on a dense set of its preimages. In a more restrictive situation of infinitely renormalizable maps of bounded combinatorial type the Lipschitz condition automatically implies the C¹-smoothness of the conjugacy. Here the critical degree can be any real number α > 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-2, author = {Waldemar Pa\l uba}, title = {On the classes of Lipschitz and smooth conjugacies of unimodal maps}, journal = {Fundamenta Mathematicae}, volume = {184}, year = {2004}, pages = {215-227}, zbl = {1067.37050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-2} }
Waldemar Pałuba. On the classes of Lipschitz and smooth conjugacies of unimodal maps. Fundamenta Mathematicae, Tome 184 (2004) pp. 215-227. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-3-2/