Let X be a Polish space and Y be a separable metric space. For a fixed ξ < ω₁, consider a family of Baire-ξ functions. Answering a question of Tomasz Natkaniec, we show that if for a function f: X → Y, the set is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on a characterization of sets which can be interesting in its own right.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-6, author = {Tam\'as M\'atrai}, title = {On the closure of Baire classes under transfinite convergences}, journal = {Fundamenta Mathematicae}, volume = {184}, year = {2004}, pages = {157-168}, zbl = {1071.26004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-6} }
Tamás Mátrai. On the closure of Baire classes under transfinite convergences. Fundamenta Mathematicae, Tome 184 (2004) pp. 157-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-6/