Generalizing a theorem of Oxtoby, it is shown that an arbitrary product of Baire spaces which are almost locally universally Kuratowski-Ulam (in particular, have countable-in-itself π-bases) is a Baire space. Also, partially answering a question of Fleissner, it is proved that a countable box product of almost locally universally Kuratowski-Ulam Baire spaces is a Baire space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-3, author = {L\'aszl\'o Zsilinszky}, title = {Products of Baire spaces revisited}, journal = {Fundamenta Mathematicae}, volume = {184}, year = {2004}, pages = {115-121}, zbl = {1076.54024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-3} }
László Zsilinszky. Products of Baire spaces revisited. Fundamenta Mathematicae, Tome 184 (2004) pp. 115-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-3/