Generalizing a theorem of Oxtoby, it is shown that an arbitrary product of Baire spaces which are almost locally universally Kuratowski-Ulam (in particular, have countable-in-itself π-bases) is a Baire space. Also, partially answering a question of Fleissner, it is proved that a countable box product of almost locally universally Kuratowski-Ulam Baire spaces is a Baire space.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-3,
author = {L\'aszl\'o Zsilinszky},
title = {Products of Baire spaces revisited},
journal = {Fundamenta Mathematicae},
volume = {184},
year = {2004},
pages = {115-121},
zbl = {1076.54024},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-3}
}
László Zsilinszky. Products of Baire spaces revisited. Fundamenta Mathematicae, Tome 184 (2004) pp. 115-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-2-3/