Combinatorics of dense subsets of the rationals
B. Balcar ; F. Hernández-Hernández ; M. Hrušák
Fundamenta Mathematicae, Tome 184 (2004), p. 59-80 / Harvested from The Polish Digital Mathematics Library

We study combinatorial properties of the partial order (Dense(ℚ),⊆). To do that we introduce cardinal invariants , , , , , describing properties of Dense(ℚ). These invariants satisfy ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ.WecomparethemwiththeiranaloguesinthewellstudiedBooleanalgebra(ω)/fin.Weshowthatℚ = p,ℚ = tandℚ = i,whereasℚ > handℚ > rarebothshowntoberelativelyconsistentwithZFC.Wealsoinvestigatecombinatoricsoftheidealnwdofnowheredensesubsetsof,.Inparticular,weshowthatnon(M)=min||: ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ )(I ∩ D = ∅) and cof(M) = min||: ⊆ Dense(ℚ) ∧ (∀I ∈ nwd)(∃D ∈ )(I ∩ = ∅). We use these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:283218
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-1-4,
     author = {B. Balcar and F. Hern\'andez-Hern\'andez and M. Hru\v s\'ak},
     title = {Combinatorics of dense subsets of the rationals},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {59-80},
     zbl = {1051.03038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-1-4}
}
B. Balcar; F. Hernández-Hernández; M. Hrušák. Combinatorics of dense subsets of the rationals. Fundamenta Mathematicae, Tome 184 (2004) pp. 59-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-1-4/