We study combinatorial properties of the partial order (Dense(ℚ),⊆). To do that we introduce cardinal invariants , , , , , describing properties of Dense(ℚ). These invariants satisfy ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚ ≤ ℚℚ = pℚ = tℚ = iℚ > hℚ > rnon(M)=min||: ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ )(I ∩ D = ∅) and cof(M) = min||: ⊆ Dense(ℚ) ∧ (∀I ∈ nwd)(∃D ∈ )(I ∩ = ∅). We use these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-1-4, author = {B. Balcar and F. Hern\'andez-Hern\'andez and M. Hru\v s\'ak}, title = {Combinatorics of dense subsets of the rationals}, journal = {Fundamenta Mathematicae}, volume = {184}, year = {2004}, pages = {59-80}, zbl = {1051.03038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-1-4} }
B. Balcar; F. Hernández-Hernández; M. Hrušák. Combinatorics of dense subsets of the rationals. Fundamenta Mathematicae, Tome 184 (2004) pp. 59-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm183-1-4/