We prove that every Baire subspace Y of c₀(Γ) has a dense metrizable subspace X with dim X ≤ dim Y. We also prove that the Kimura-Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-1-2,
author = {Michael G. Charalambous},
title = {The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces},
journal = {Fundamenta Mathematicae},
volume = {184},
year = {2004},
pages = {41-52},
zbl = {1062.54032},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-1-2}
}
Michael G. Charalambous. The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces. Fundamenta Mathematicae, Tome 184 (2004) pp. 41-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-1-2/