We prove that every Baire subspace Y of c₀(Γ) has a dense metrizable subspace X with dim X ≤ dim Y. We also prove that the Kimura-Morishita Eberlein compactifications of metrizable spaces preserve large inductive dimension. The proofs rely on new and old results concerning the dimension of uniform spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-1-2, author = {Michael G. Charalambous}, title = {The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces}, journal = {Fundamenta Mathematicae}, volume = {184}, year = {2004}, pages = {41-52}, zbl = {1062.54032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-1-2} }
Michael G. Charalambous. The dimension of metrizable subspaces of Eberlein compacta and Eberlein compactifications of metrizable spaces. Fundamenta Mathematicae, Tome 184 (2004) pp. 41-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-1-2/