Motivated by Leibniz’s thesis on the identity of indiscernibles, Mycielski introduced a set-theoretic axiom, here dubbed the Leibniz-Mycielski axiom LM, which asserts that for each pair of distinct sets x and y there exists an ordinal α exceeding the ranks of x and y, and a formula φ(v), such that satisfies φ(x) ∧¬ φ(y). We examine the relationship between LM and some other axioms of set theory. Our principal results are as follows: 1. In the presence of ZF, the following are equivalent: (a) LM. (b) The existence of a parameter free definable class function F such that for all sets x with at least two elements, ∅ ≠ F(x) ⊊ x. (c) The existence of a parameter free definable injection of the universe into the class of subsets of ordinals. 2. Con(ZF) ⇒ Con(ZFC +¬LM). 3. [Solovay] Con(ZF) ⇒ Con(ZF + LM + ¬AC).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm181-3-2, author = {Ali Enayat}, title = {On the Leibniz-Mycielski axiom in set theory}, journal = {Fundamenta Mathematicae}, volume = {184}, year = {2004}, pages = {215-231}, zbl = {1051.03041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm181-3-2} }
Ali Enayat. On the Leibniz-Mycielski axiom in set theory. Fundamenta Mathematicae, Tome 184 (2004) pp. 215-231. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm181-3-2/