Cardinal sequences and Cohen real extensions
István Juhász ; Saharon Shelah ; Lajos Soukup ; Zoltán Szentmiklóssy
Fundamenta Mathematicae, Tome 184 (2004), p. 75-88 / Harvested from The Polish Digital Mathematics Library

We show that if we add any number of Cohen reals to the ground model then, in the generic extension, a locally compact scattered space has at most (2)V levels of size ω. We also give a complete ZFC characterization of the cardinal sequences of regular scattered spaces. Although the classes of regular and of 0-dimensional scattered spaces are different, we prove that they have the same cardinal sequences.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:282869
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm181-1-3,
     author = {Istv\'an Juh\'asz and Saharon Shelah and Lajos Soukup and Zolt\'an Szentmikl\'ossy},
     title = {Cardinal sequences and Cohen real extensions},
     journal = {Fundamenta Mathematicae},
     volume = {184},
     year = {2004},
     pages = {75-88},
     zbl = {1052.54004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm181-1-3}
}
István Juhász; Saharon Shelah; Lajos Soukup; Zoltán Szentmiklóssy. Cardinal sequences and Cohen real extensions. Fundamenta Mathematicae, Tome 184 (2004) pp. 75-88. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm181-1-3/