Weak Wecken's theorem for periodic points in dimension 3
Jerzy Jezierski
Fundamenta Mathematicae, Tome 177 (2003), p. 223-239 / Harvested from The Polish Digital Mathematics Library

We prove that a self-map f: M → M of a compact PL-manifold of dimension ≥ 3 is homotopic to a map with no periodic points of period n iff the Nielsen numbers N(fk) for k dividing n all vanish. This generalizes the result from [Je] to dimension 3.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:286273
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2,
     author = {Jerzy Jezierski},
     title = {Weak Wecken's theorem for periodic points in dimension 3},
     journal = {Fundamenta Mathematicae},
     volume = {177},
     year = {2003},
     pages = {223-239},
     zbl = {1052.55003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2}
}
Jerzy Jezierski. Weak Wecken's theorem for periodic points in dimension 3. Fundamenta Mathematicae, Tome 177 (2003) pp. 223-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2/