We prove that a self-map f: M → M of a compact PL-manifold of dimension ≥ 3 is homotopic to a map with no periodic points of period n iff the Nielsen numbers for k dividing n all vanish. This generalizes the result from [Je] to dimension 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2, author = {Jerzy Jezierski}, title = {Weak Wecken's theorem for periodic points in dimension 3}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {223-239}, zbl = {1052.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2} }
Jerzy Jezierski. Weak Wecken's theorem for periodic points in dimension 3. Fundamenta Mathematicae, Tome 177 (2003) pp. 223-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2/