We prove that a self-map f: M → M of a compact PL-manifold of dimension ≥ 3 is homotopic to a map with no periodic points of period n iff the Nielsen numbers for k dividing n all vanish. This generalizes the result from [Je] to dimension 3.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2,
author = {Jerzy Jezierski},
title = {Weak Wecken's theorem for periodic points in dimension 3},
journal = {Fundamenta Mathematicae},
volume = {177},
year = {2003},
pages = {223-239},
zbl = {1052.55003},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2}
}
Jerzy Jezierski. Weak Wecken's theorem for periodic points in dimension 3. Fundamenta Mathematicae, Tome 177 (2003) pp. 223-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-3-2/