We prove that for every compactum X and every integer n ≥ 2 there are a compactum Z of dimension ≤ n+1 and a surjective -map r: Z → X such that for every abelian group G and every integer k ≥ 2 such that we have and r is G-acyclic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-5, author = {Michael Levin}, title = {Universal acyclic resolutions for arbitrary coefficient groups}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {159-169}, zbl = {1055.55001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-5} }
Michael Levin. Universal acyclic resolutions for arbitrary coefficient groups. Fundamenta Mathematicae, Tome 177 (2003) pp. 159-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-5/