Universal acyclic resolutions for arbitrary coefficient groups
Michael Levin
Fundamenta Mathematicae, Tome 177 (2003), p. 159-169 / Harvested from The Polish Digital Mathematics Library

We prove that for every compactum X and every integer n ≥ 2 there are a compactum Z of dimension ≤ n+1 and a surjective UVn-1-map r: Z → X such that for every abelian group G and every integer k ≥ 2 such that dimGXkn we have dimGZk and r is G-acyclic.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:283189
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-5,
     author = {Michael Levin},
     title = {Universal acyclic resolutions for arbitrary coefficient groups},
     journal = {Fundamenta Mathematicae},
     volume = {177},
     year = {2003},
     pages = {159-169},
     zbl = {1055.55001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-5}
}
Michael Levin. Universal acyclic resolutions for arbitrary coefficient groups. Fundamenta Mathematicae, Tome 177 (2003) pp. 159-169. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-5/