The ℤ₂-cohomology cup-length of real flag manifolds
Július Korbaš ; Juraj Lörinc
Fundamenta Mathematicae, Tome 177 (2003), p. 143-158 / Harvested from The Polish Digital Mathematics Library

Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds O(n+...+nq)/O(n)×...×O(nq), q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any O(n+...+nq)/O(n)×...×O(nq), q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:283181
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-4,
     author = {J\'ulius Korba\v s and Juraj L\"orinc},
     title = {The Z2-cohomology cup-length of real flag manifolds},
     journal = {Fundamenta Mathematicae},
     volume = {177},
     year = {2003},
     pages = {143-158},
     zbl = {1052.55006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-4}
}
Július Korbaš; Juraj Lörinc. The ℤ₂-cohomology cup-length of real flag manifolds. Fundamenta Mathematicae, Tome 177 (2003) pp. 143-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-4/