Using fiberings, we determine the cup-length and the Lyusternik-Shnirel’man category for some infinite families of real flag manifolds , q ≥ 3. We also give, or describe ways to obtain, interesting estimates for the cup-length of any , q ≥ 3. To present another approach (combining well with the “method of fiberings”), we generalize to the real flag manifolds Stong’s approach used for calculations in the ℤ₂-cohomology algebra of the Grassmann manifolds.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-4, author = {J\'ulius Korba\v s and Juraj L\"orinc}, title = {The Z2-cohomology cup-length of real flag manifolds}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {143-158}, zbl = {1052.55006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-4} }
Július Korbaš; Juraj Lörinc. The ℤ₂-cohomology cup-length of real flag manifolds. Fundamenta Mathematicae, Tome 177 (2003) pp. 143-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm178-2-4/