Generating varieties for the triple loop space of classical Lie groups
Yasuhiko Kamiyama
Fundamenta Mathematicae, Tome 177 (2003), p. 269-283 / Harvested from The Polish Digital Mathematics Library

For G = SU(n), Sp(n) or Spin(n), let CG(SU(2)) be the centralizer of a certain SU(2) in G. We have a natural map J:G/CG(SU(2))Ω³G. For a generator α of H(G/CG(SU(2));/2), we describe J⁎(α). In particular, it is proved that J:H(G/CG(SU(2));/2)H(Ω³G;/2) is injective.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:282803
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-3-6,
     author = {Yasuhiko Kamiyama},
     title = {Generating varieties for the triple loop space of classical Lie groups},
     journal = {Fundamenta Mathematicae},
     volume = {177},
     year = {2003},
     pages = {269-283},
     zbl = {1028.58013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-3-6}
}
Yasuhiko Kamiyama. Generating varieties for the triple loop space of classical Lie groups. Fundamenta Mathematicae, Tome 177 (2003) pp. 269-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-3-6/