The index of analytic vector fields and Newton polyhedra
Carles Bivià-Ausina
Fundamenta Mathematicae, Tome 177 (2003), p. 251-267 / Harvested from The Polish Digital Mathematics Library

We prove that if f:(ℝⁿ,0) → (ℝⁿ,0) is an analytic map germ such that f-1(0)=0 and f satisfies a certain non-degeneracy condition with respect to a Newton polyhedron Γ₊ ⊆ ℝⁿ, then the index of f only depends on the principal parts of f with respect to the compact faces of Γ₊. In particular, we obtain a known result on the index of semi-weighted-homogeneous map germs. We also discuss non-degenerate vector fields in the sense of Khovanskiĭand special applications of our results to planar analytic vector fields.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:282640
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-3-5,
     author = {Carles Bivi\`a-Ausina},
     title = {The index of analytic vector fields and Newton polyhedra},
     journal = {Fundamenta Mathematicae},
     volume = {177},
     year = {2003},
     pages = {251-267},
     zbl = {1057.32011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-3-5}
}
Carles Bivià-Ausina. The index of analytic vector fields and Newton polyhedra. Fundamenta Mathematicae, Tome 177 (2003) pp. 251-267. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-3-5/