Two sets of reals are Borel equivalent if one is the Borel pre-image of the other, and a Borel-Wadge degree is a collection of pairwise Borel equivalent subsets of ℝ. In this note we investigate the structure of Borel-Wadge degrees under the assumption of the Axiom of Determinacy.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-5,
author = {Alessandro Andretta and Donald A. Martin},
title = {Borel-Wadge degrees},
journal = {Fundamenta Mathematicae},
volume = {177},
year = {2003},
pages = {175-192},
zbl = {1020.03041},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-5}
}
Alessandro Andretta; Donald A. Martin. Borel-Wadge degrees. Fundamenta Mathematicae, Tome 177 (2003) pp. 175-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-5/