Two sets of reals are Borel equivalent if one is the Borel pre-image of the other, and a Borel-Wadge degree is a collection of pairwise Borel equivalent subsets of ℝ. In this note we investigate the structure of Borel-Wadge degrees under the assumption of the Axiom of Determinacy.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-5, author = {Alessandro Andretta and Donald A. Martin}, title = {Borel-Wadge degrees}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {175-192}, zbl = {1020.03041}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-5} }
Alessandro Andretta; Donald A. Martin. Borel-Wadge degrees. Fundamenta Mathematicae, Tome 177 (2003) pp. 175-192. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-5/