We work within the one-parameter family of symmetric tent maps, where the slope is the parameter. Given two such tent maps , with periodic critical points, we show that the inverse limit spaces and are not homeomorphic when a ≠ b. To obtain our result, we define topological substructures of a composant, called “wrapping points” and “gaps”, and identify properties of these substructures preserved under a homeomorphism.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-1, author = {Lois Kailhofer}, title = {A classification of inverse limit spaces of tent maps with periodic critical points}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {95-120}, zbl = {1028.54038}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-1} }
Lois Kailhofer. A classification of inverse limit spaces of tent maps with periodic critical points. Fundamenta Mathematicae, Tome 177 (2003) pp. 95-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-1/