A classification of inverse limit spaces of tent maps with periodic critical points
Lois Kailhofer
Fundamenta Mathematicae, Tome 177 (2003), p. 95-120 / Harvested from The Polish Digital Mathematics Library

We work within the one-parameter family of symmetric tent maps, where the slope is the parameter. Given two such tent maps fa, fb with periodic critical points, we show that the inverse limit spaces (a,fa) and (b,gb) are not homeomorphic when a ≠ b. To obtain our result, we define topological substructures of a composant, called “wrapping points” and “gaps”, and identify properties of these substructures preserved under a homeomorphism.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:283300
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-1,
     author = {Lois Kailhofer},
     title = {A classification of inverse limit spaces of tent maps with periodic critical points},
     journal = {Fundamenta Mathematicae},
     volume = {177},
     year = {2003},
     pages = {95-120},
     zbl = {1028.54038},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-1}
}
Lois Kailhofer. A classification of inverse limit spaces of tent maps with periodic critical points. Fundamenta Mathematicae, Tome 177 (2003) pp. 95-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-2-1/