Let p be a prime, and let ℱ be the category of functors from the finite -vector spaces to all -vector spaces. The object Id of ℱ is the inclusion functor. Let F and G be two objects in ℱ. If F and G satisfy suitable conditions, the main result of this paper allows one to compute from the knowledge of and .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-1-4, author = {Alain Troesch}, title = {Une formule pour les extensions de foncteurs compos\'es}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {55-82}, zbl = {1025.18008}, language = {fra}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-1-4} }
Alain Troesch. Une formule pour les extensions de foncteurs composés. Fundamenta Mathematicae, Tome 177 (2003) pp. 55-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-1-4/