Let Ω be a bounded domain in with smooth boundary. Consider the following elliptic system: in Ω, in Ω, u = 0, v = 0 in ∂Ω. (ES) We assume that H is an even "-"-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if (0,0) is a hyperbolic solution of (ES), then (ES) has at least 2|μ| nontrivial solutions, where μ = μ(0,0) is the renormalized Morse index of (0,0). This proves a conjecture by Angenent and van der Vorst.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-3, author = {Marek Izydorek and Krzysztof P. Rybakowski}, title = {Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {233-249}, zbl = {1090.35072}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-3} }
Marek Izydorek; Krzysztof P. Rybakowski. Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory. Fundamenta Mathematicae, Tome 177 (2003) pp. 233-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-3/