Let Ω be a bounded domain in with smooth boundary. Consider the following elliptic system: in Ω, in Ω, u = 0, v = 0 in ∂Ω. (ES) We assume that H is an even "-"-type Hamiltonian function whose first order partial derivatives satisfy appropriate growth conditions. We show that if (0,0) is a hyperbolic solution of (ES), then (ES) has at least 2|μ| nontrivial solutions, where μ = μ(0,0) is the renormalized Morse index of (0,0). This proves a conjecture by Angenent and van der Vorst.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-3,
author = {Marek Izydorek and Krzysztof P. Rybakowski},
title = {Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory},
journal = {Fundamenta Mathematicae},
volume = {177},
year = {2003},
pages = {233-249},
zbl = {1090.35072},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-3}
}
Marek Izydorek; Krzysztof P. Rybakowski. Multiple solutions of indefinite elliptic systems via a Galerkin-type Conley index theory. Fundamenta Mathematicae, Tome 177 (2003) pp. 233-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-3/