The multifractal generalizations of Hausdorff dimension and packing dimension are investigated for an invariant subset A of a piecewise monotonic map on the interval. Formulae for the multifractal dimension of an ergodic invariant measure, the essential multifractal dimension of A, and the multifractal Hausdorff dimension of A are derived.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-2, author = {Franz Hofbauer and Peter Raith and Thomas Steinberger}, title = {Multifractal dimensions for invariant subsets of piecewise monotonic interval maps}, journal = {Fundamenta Mathematicae}, volume = {177}, year = {2003}, pages = {209-232}, zbl = {1051.37011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-2} }
Franz Hofbauer; Peter Raith; Thomas Steinberger. Multifractal dimensions for invariant subsets of piecewise monotonic interval maps. Fundamenta Mathematicae, Tome 177 (2003) pp. 209-232. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-3-2/