Uncountable γ-sets under axiom CPAcubegame
Krzysztof Ciesielski ; Andrés Millán ; Janusz Pawlikowski
Fundamenta Mathematicae, Tome 177 (2003), p. 143-155 / Harvested from The Polish Digital Mathematics Library

We formulate a Covering Property Axiom CPAcubegame, which holds in the iterated perfect set model, and show that it implies the existence of uncountable strong γ-sets in ℝ (which are strongly meager) as well as uncountable γ-sets in ℝ which are not strongly meager. These sets must be of cardinality ω₁ < , since every γ-set is universally null, while CPAcubegame implies that every universally null has cardinality less than = ω₂. We also show that CPAcubegame implies the existence of a partition of ℝ into ω₁ null compact sets.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:283056
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-2-3,
     author = {Krzysztof Ciesielski and Andr\'es Mill\'an and Janusz Pawlikowski},
     title = {Uncountable $\gamma$-sets under axiom $CPA\_{cube}^{game}$
            },
     journal = {Fundamenta Mathematicae},
     volume = {177},
     year = {2003},
     pages = {143-155},
     zbl = {1020.03043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-2-3}
}
Krzysztof Ciesielski; Andrés Millán; Janusz Pawlikowski. Uncountable γ-sets under axiom $CPA_{cube}^{game}$
            . Fundamenta Mathematicae, Tome 177 (2003) pp. 143-155. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm176-2-3/