A note on singular homology groups of infinite products of compacta
Kazuhiro Kawamura
Fundamenta Mathematicae, Tome 173 (2002), p. 285-289 / Harvested from The Polish Digital Mathematics Library

Let n be an integer with n ≥ 2 and Xi be an infinite collection of (n-1)-connected continua. We compare the homotopy groups of Σ(iXi) with those of iΣXi (Σ denotes the unreduced suspension) via the Freudenthal Suspension Theorem. An application to homology groups of the countable product of the n(≥ 2)-sphere is given.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282938
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-5,
     author = {Kazuhiro Kawamura},
     title = {A note on singular homology groups of infinite products of compacta},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {285-289},
     zbl = {1014.55003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-5}
}
Kazuhiro Kawamura. A note on singular homology groups of infinite products of compacta. Fundamenta Mathematicae, Tome 173 (2002) pp. 285-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-5/