Let n be an integer with n ≥ 2 and be an infinite collection of (n-1)-connected continua. We compare the homotopy groups of with those of (Σ denotes the unreduced suspension) via the Freudenthal Suspension Theorem. An application to homology groups of the countable product of the n(≥ 2)-sphere is given.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-5, author = {Kazuhiro Kawamura}, title = {A note on singular homology groups of infinite products of compacta}, journal = {Fundamenta Mathematicae}, volume = {173}, year = {2002}, pages = {285-289}, zbl = {1014.55003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-5} }
Kazuhiro Kawamura. A note on singular homology groups of infinite products of compacta. Fundamenta Mathematicae, Tome 173 (2002) pp. 285-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-5/