An irrational problem
Franklin D. Tall
Fundamenta Mathematicae, Tome 173 (2002), p. 259-269 / Harvested from The Polish Digital Mathematics Library

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define XM to be X ∩ M with topology generated by UM:UM. Suppose XM is homeomorphic to the irrationals; must X=XM? We have partial results. We also answer a question of Gruenhage by showing that if XM is homeomorphic to the “Long Cantor Set”, then X=XM.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282913
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-3,
     author = {Franklin D. Tall},
     title = {An irrational problem},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {259-269},
     zbl = {1013.03056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-3}
}
Franklin D. Tall. An irrational problem. Fundamenta Mathematicae, Tome 173 (2002) pp. 259-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-3/