Zero-one laws for graphs with edge probabilities decaying with distance. Part I
Saharon Shelah
Fundamenta Mathematicae, Tome 173 (2002), p. 195-239 / Harvested from The Polish Digital Mathematics Library

Let Gₙ be the random graph on [n] = 1,...,n with the possible edge i,j having probability p|i-j|=1/|i-j|α for j ≠ i, i+1, i-1 with α ∈ (0,1) irrational. We prove that the zero-one law (for first order logic) holds..

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282951
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-1,
     author = {Saharon Shelah},
     title = {Zero-one laws for graphs with edge probabilities decaying with distance. Part I},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {195-239},
     zbl = {1013.03031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-1}
}
Saharon Shelah. Zero-one laws for graphs with edge probabilities decaying with distance. Part I. Fundamenta Mathematicae, Tome 173 (2002) pp. 195-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-3-1/