Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no -points.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-2-4, author = {Grzegorz Plebanek}, title = {Convex Corson compacta and Radon measures}, journal = {Fundamenta Mathematicae}, volume = {173}, year = {2002}, pages = {143-154}, zbl = {1045.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-2-4} }
Grzegorz Plebanek. Convex Corson compacta and Radon measures. Fundamenta Mathematicae, Tome 173 (2002) pp. 143-154. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-2-4/