Some combinatorics involving ξ-large sets
Teresa Bigorajska ; Henryk Kotlarski
Fundamenta Mathematicae, Tome 173 (2002), p. 119-125 / Harvested from The Polish Digital Mathematics Library

We prove a version of the Ramsey theorem for partitions of (increasing) n-tuples. We derive this result from a version of König's infinity lemma for ξ-large trees. Here ξ < ε₀ and the notion of largeness is in the sense of Hardy hierarchy.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282688
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-2-2,
     author = {Teresa Bigorajska and Henryk Kotlarski},
     title = {Some combinatorics involving $\xi$-large sets},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {119-125},
     zbl = {1010.05006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-2-2}
}
Teresa Bigorajska; Henryk Kotlarski. Some combinatorics involving ξ-large sets. Fundamenta Mathematicae, Tome 173 (2002) pp. 119-125. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-2-2/