A fixed point conjecture for Borsuk continuous set-valued mappings
Dariusz Miklaszewski
Fundamenta Mathematicae, Tome 173 (2002), p. 69-78 / Harvested from The Polish Digital Mathematics Library

The main result of this paper is that for n = 3,4,5 and k = n-2, every Borsuk continuous set-valued map of the closed ball in the n-dimensional Euclidean space with values which are one-point sets or sets homeomorphic to the k-sphere has a fixed point. Our approach fails for (k,n) = (1,4). A relevant counterexample (for the homological method, not for the fixed point conjecture) is indicated.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282641
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-4,
     author = {Dariusz Miklaszewski},
     title = {A fixed point conjecture for Borsuk continuous set-valued mappings},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {69-78},
     zbl = {1035.54012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-4}
}
Dariusz Miklaszewski. A fixed point conjecture for Borsuk continuous set-valued mappings. Fundamenta Mathematicae, Tome 173 (2002) pp. 69-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-4/