On dimensionally restricted maps
H. Murat Tuncali ; Vesko Valov
Fundamenta Mathematicae, Tome 173 (2002), p. 35-52 / Harvested from The Polish Digital Mathematics Library

Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an Fσ-subset Ak of X such that dimAkk and the restriction f|(XAk) is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about extensional dimension is also established.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:283094
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-2,
     author = {H. Murat Tuncali and Vesko Valov},
     title = {On dimensionally restricted maps},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {35-52},
     zbl = {1021.54027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-2}
}
H. Murat Tuncali; Vesko Valov. On dimensionally restricted maps. Fundamenta Mathematicae, Tome 173 (2002) pp. 35-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm175-1-2/