Diffusion to infinity for periodic orbits in meromorphic dynamics
Janina Kotus ; Grzegorz Świątek
Fundamenta Mathematicae, Tome 173 (2002), p. 263-269 / Harvested from The Polish Digital Mathematics Library

A small perturbation of a rational function causes only a small perturbation of its periodic orbits. We show that the situation is different for transcendental maps. Namely, orbits may escape to infinity under small perturbations of parameters. We show examples where this "diffusion to infinity" occurs and prove certain conditions under which it does not.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282778
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-6,
     author = {Janina Kotus and Grzegorz \'Swi\k atek},
     title = {Diffusion to infinity for periodic orbits in meromorphic dynamics},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {263-269},
     zbl = {1130.37372},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-6}
}
Janina Kotus; Grzegorz Świątek. Diffusion to infinity for periodic orbits in meromorphic dynamics. Fundamenta Mathematicae, Tome 173 (2002) pp. 263-269. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-6/