On typical parametrizations of finite-dimensional compacta on the Cantor set
Paweł Milewski
Fundamenta Mathematicae, Tome 173 (2002), p. 253-261 / Harvested from The Polish Digital Mathematics Library

We prove that if X is a perfect finite-dimensional compactum, then for almost every continuous surjection of the Cantor set onto X, the set of points of maximal order is uncountable. Moreover, if X is a perfect compactum of positive finite dimension then for a typical parametrization of X on the Cantor set, the set of points of maximal order is homeomorphic to the product of the rationals and the Cantor set.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282904
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-5,
     author = {Pawe\l\ Milewski},
     title = {On typical parametrizations of finite-dimensional compacta on the Cantor set},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {253-261},
     zbl = {1010.54024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-5}
}
Paweł Milewski. On typical parametrizations of finite-dimensional compacta on the Cantor set. Fundamenta Mathematicae, Tome 173 (2002) pp. 253-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-5/