We describe the structure of the hyperbolic components of the parameter plane of the complex exponential family, as started in [1]. More precisely, we label each component with a parameter plane kneading sequence, and we prove the existence of a hyperbolic component for any given such sequence. We also compare these sequences with the more commonly used dynamical kneading sequences.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-1, author = {Robert L. Devaney and Nuria Fagella and Xavier Jarque}, title = {Hyperbolic components of the complex exponential family}, journal = {Fundamenta Mathematicae}, volume = {173}, year = {2002}, pages = {193-215}, zbl = {1099.30011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-1} }
Robert L. Devaney; Nuria Fagella; Xavier Jarque. Hyperbolic components of the complex exponential family. Fundamenta Mathematicae, Tome 173 (2002) pp. 193-215. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-3-1/