If κ is either supercompact or strong and δ < κ is α strong or α supercompact for every α < κ, then it is known δ must be (fully) strong or supercompact. We show this is not necessarily the case if κ is strongly compact.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-1-5,
author = {Arthur W. Apter},
title = {On the non-extendibility of strongness and supercompactness through strong compactness},
journal = {Fundamenta Mathematicae},
volume = {173},
year = {2002},
pages = {87-96},
zbl = {1004.03041},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-1-5}
}
Arthur W. Apter. On the non-extendibility of strongness and supercompactness through strong compactness. Fundamenta Mathematicae, Tome 173 (2002) pp. 87-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-1-5/