On the non-extendibility of strongness and supercompactness through strong compactness
Arthur W. Apter
Fundamenta Mathematicae, Tome 173 (2002), p. 87-96 / Harvested from The Polish Digital Mathematics Library

If κ is either supercompact or strong and δ < κ is α strong or α supercompact for every α < κ, then it is known δ must be (fully) strong or supercompact. We show this is not necessarily the case if κ is strongly compact.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282607
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-1-5,
     author = {Arthur W. Apter},
     title = {On the non-extendibility of strongness and supercompactness through strong compactness},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {87-96},
     zbl = {1004.03041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-1-5}
}
Arthur W. Apter. On the non-extendibility of strongness and supercompactness through strong compactness. Fundamenta Mathematicae, Tome 173 (2002) pp. 87-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm174-1-5/