Coherent functors in stable homotopy theory
Henning Krause
Fundamenta Mathematicae, Tome 173 (2002), p. 33-56 / Harvested from The Polish Digital Mathematics Library

Coherent functors 𝓢 → Ab from a compactly generated triangulated category into the category of abelian groups are studied. This is inspired by Auslander's classical analysis of coherent functors from a fixed abelian category into abelian groups. We characterize coherent functors and their filtered colimits in various ways. In addition, we investigate certain subcategories of 𝓢 which arise from families of coherent functors.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282827
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-1-3,
     author = {Henning Krause},
     title = {Coherent functors in stable homotopy theory},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {33-56},
     zbl = {1001.55022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-1-3}
}
Henning Krause. Coherent functors in stable homotopy theory. Fundamenta Mathematicae, Tome 173 (2002) pp. 33-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-1-3/