Clones on regular cardinals
Martin Goldstern ; Saharon Shelah
Fundamenta Mathematicae, Tome 173 (2002), p. 1-20 / Harvested from The Polish Digital Mathematics Library

We investigate the structure of the lattice of clones on an infinite set X. We first observe that ultrafilters naturally induce clones; this yields a simple proof of Rosenberg’s theorem: there are 22λ maximal (= “precomplete”) clones on a set of size λ. The clones we construct do not contain all unary functions. We then investigate clones that do contain all unary functions. Using a strong negative partition theorem from pcf theory we show that for cardinals λ (in particular, for all successors of regulars) there are 22λ such clones on a set of size λ. Finally, we show that on a weakly compact cardinal there are exactly 2 precomplete clones which contain all unary functions.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282660
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-1-1,
     author = {Martin Goldstern and Saharon Shelah},
     title = {Clones on regular cardinals},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {1-20},
     zbl = {0997.08004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-1-1}
}
Martin Goldstern; Saharon Shelah. Clones on regular cardinals. Fundamenta Mathematicae, Tome 173 (2002) pp. 1-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm173-1-1/