Maps into the torus and minimal coincidence sets for homotopies
D. L. Goncalves ; M. R. Kelly
Fundamenta Mathematicae, Tome 173 (2002), p. 99-106 / Harvested from The Polish Digital Mathematics Library

Let X,Y be manifolds of the same dimension. Given continuous mappings fi,gi:XY, i = 0,1, we consider the 1-parameter coincidence problem of finding homotopies ft,gt, 0 ≤ t ≤ 1, such that the number of coincidence points for the pair ft,gt is independent of t. When Y is the torus and f₀,g₀ are coincidence free we produce coincidence free pairs f₁,g₁ such that no homotopy joining them is coincidence free at each level. When X is also the torus we characterize the solution of the problem in terms of the Lefschetz coincidence number.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:283264
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm172-2-1,
     author = {D. L. Goncalves and M. R. Kelly},
     title = {Maps into the torus and minimal coincidence sets for homotopies},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {99-106},
     zbl = {0988.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm172-2-1}
}
D. L. Goncalves; M. R. Kelly. Maps into the torus and minimal coincidence sets for homotopies. Fundamenta Mathematicae, Tome 173 (2002) pp. 99-106. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm172-2-1/