Fragments of strong compactness, families of partitions and ideal extensions
Laura Fontanella ; Pierre Matet
Fundamenta Mathematicae, Tome 233 (2016), p. 171-190 / Harvested from The Polish Digital Mathematics Library

We investigate some natural combinatorial principles related to the notion of mild ineffability, and use them to obtain new characterizations of mild ineffable and weakly compact cardinals. We also show that one of these principles may be satisfied by a successor cardinal. Finally, we establish a version for κ(λ) of the canonical Ramsey theorem for pairs.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:286574
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm172-1-2016,
     author = {Laura Fontanella and Pierre Matet},
     title = {Fragments of strong compactness, families of partitions and ideal extensions},
     journal = {Fundamenta Mathematicae},
     volume = {233},
     year = {2016},
     pages = {171-190},
     zbl = {06602788},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm172-1-2016}
}
Laura Fontanella; Pierre Matet. Fragments of strong compactness, families of partitions and ideal extensions. Fundamenta Mathematicae, Tome 233 (2016) pp. 171-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm172-1-2016/