Herbrand consistency and bounded arithmetic
Zofia Adamowicz
Fundamenta Mathematicae, Tome 173 (2002), p. 279-292 / Harvested from The Polish Digital Mathematics Library

We prove that the Gödel incompleteness theorem holds for a weak arithmetic Tₘ = IΔ₀ + Ωₘ, for m ≥ 2, in the form Tₘ ⊬ HCons(Tₘ), where HCons(Tₘ) is an arithmetic formula expressing the consistency of Tₘ with respect to the Herbrand notion of provability. Moreover, we prove THConsI(T), where HConsI is HCons relativised to the definable cut Iₘ of (m-2)-times iterated logarithms. The proof is model-theoretic. We also prove a certain non-conservation result for Tₘ.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282735
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-7,
     author = {Zofia Adamowicz},
     title = {Herbrand consistency and bounded arithmetic},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {279-292},
     zbl = {0995.03044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-7}
}
Zofia Adamowicz. Herbrand consistency and bounded arithmetic. Fundamenta Mathematicae, Tome 173 (2002) pp. 279-292. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-7/