The Knaster continuum is defined as the inverse limit of the pth degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer p ≥ 2, all composants of having no endpoints are homeomorphic. This generalizes Bandt’s result which concerns the case p = 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-6, author = {Sonja \v Stimac}, title = {Homeomorphisms of composants of Knaster continua}, journal = {Fundamenta Mathematicae}, volume = {173}, year = {2002}, pages = {267-278}, zbl = {1115.37014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-6} }
Sonja Štimac. Homeomorphisms of composants of Knaster continua. Fundamenta Mathematicae, Tome 173 (2002) pp. 267-278. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-6/