We show that cov(M) is the least infinite cardinal λ such that (the set of all finite subsets of λ ) fails to satisfy a certain natural generalization of Ramsey’s Theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4,
author = {Pierre Matet},
title = {The covering number for category and partition relations on $P\_{$\omega$}($\lambda$)$
},
journal = {Fundamenta Mathematicae},
volume = {173},
year = {2002},
pages = {235-247},
zbl = {1029.03035},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4}
}
Pierre Matet. The covering number for category and partition relations on $P_{ω}(λ)$
. Fundamenta Mathematicae, Tome 173 (2002) pp. 235-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4/