We show that cov(M) is the least infinite cardinal λ such that (the set of all finite subsets of λ ) fails to satisfy a certain natural generalization of Ramsey’s Theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4, author = {Pierre Matet}, title = {The covering number for category and partition relations on $P\_{$\omega$}($\lambda$)$ }, journal = {Fundamenta Mathematicae}, volume = {173}, year = {2002}, pages = {235-247}, zbl = {1029.03035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4} }
Pierre Matet. The covering number for category and partition relations on $P_{ω}(λ)$ . Fundamenta Mathematicae, Tome 173 (2002) pp. 235-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4/