The covering number for category and partition relations on Pω(λ)
Pierre Matet
Fundamenta Mathematicae, Tome 173 (2002), p. 235-247 / Harvested from The Polish Digital Mathematics Library

We show that cov(M) is the least infinite cardinal λ such that Pω(λ) (the set of all finite subsets of λ ) fails to satisfy a certain natural generalization of Ramsey’s Theorem.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282926
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4,
     author = {Pierre Matet},
     title = {The covering number for category and partition relations on $P\_{$\omega$}($\lambda$)$
            },
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {235-247},
     zbl = {1029.03035},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4}
}
Pierre Matet. The covering number for category and partition relations on $P_{ω}(λ)$
            . Fundamenta Mathematicae, Tome 173 (2002) pp. 235-247. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-4/