We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-3,
author = {Takashi Kimura and Kazuhiko Morishita},
title = {On Eberlein compactifications of metrizable spaces},
journal = {Fundamenta Mathematicae},
volume = {173},
year = {2002},
pages = {223-234},
zbl = {1035.54015},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-3}
}
Takashi Kimura; Kazuhiko Morishita. On Eberlein compactifications of metrizable spaces. Fundamenta Mathematicae, Tome 173 (2002) pp. 223-234. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-3/