Decidability and definability results related to the elementary theory of ordinal multiplication
Alexis Bès
Fundamenta Mathematicae, Tome 173 (2002), p. 197-211 / Harvested from The Polish Digital Mathematics Library

The elementary theory of ⟨α;×⟩, where α is an ordinal and × denotes ordinal multiplication, is decidable if and only if α<ωω. Moreover if |r and |l respectively denote the right- and left-hand divisibility relation, we show that Th ωωξ;|r and Th ωξ;|l are decidable for every ordinal ξ. Further related definability results are also presented.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:286385
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-1,
     author = {Alexis B\`es},
     title = {Decidability and definability results related to the elementary theory of ordinal multiplication},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {197-211},
     zbl = {0998.03005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-1}
}
Alexis Bès. Decidability and definability results related to the elementary theory of ordinal multiplication. Fundamenta Mathematicae, Tome 173 (2002) pp. 197-211. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-3-1/