On an analytic approach to the Fatou conjecture
Genadi Levin
Fundamenta Mathematicae, Tome 173 (2002), p. 177-196 / Harvested from The Polish Digital Mathematics Library

Let f be a quadratic map (more generally, f(z)=zd+c, d > 1) of the complex plane. We give sufficient conditions for f to have no measurable invariant linefields on its Julia set. We also prove that if the series n01/(f)'(c) converges absolutely, then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer (Ruelle-type) operators and approximation theorems.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:282890
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-2-5,
     author = {Genadi Levin},
     title = {On an analytic approach to the Fatou conjecture},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {177-196},
     zbl = {0984.37046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-2-5}
}
Genadi Levin. On an analytic approach to the Fatou conjecture. Fundamenta Mathematicae, Tome 173 (2002) pp. 177-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-2-5/