On the Conley index in Hilbert spaces in the absence of uniqueness
Marek Izydorek ; Krzysztof P. Rybakowski
Fundamenta Mathematicae, Tome 173 (2002), p. 31-52 / Harvested from The Polish Digital Mathematics Library

Consider the ordinary differential equation (1) ẋ = Lx + K(x) on an infinite-dimensional Hilbert space E, where L is a bounded linear operator on E which is assumed to be strongly indefinite and K: E → E is a completely continuous but not necessarily locally Lipschitzian map. Given any isolating neighborhood N relative to equation (1) we define a Conley-type index of N. This index is based on Galerkin approximation of equation (1) by finite-dimensional ODEs and extends to the non-Lipschitzian case the ℒ𝓢-Conley index theory introduced in [9]. This extended ℒ𝓢-Conley index allows applications to strongly indefinite variational problems ∇Φ(x) = 0 where Φ: E → ℝ is merely a C¹-function.

Publié le : 2002-01-01
EUDML-ID : urn:eudml:doc:283016
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-1-2,
     author = {Marek Izydorek and Krzysztof P. Rybakowski},
     title = {On the Conley index in Hilbert spaces in the absence of uniqueness},
     journal = {Fundamenta Mathematicae},
     volume = {173},
     year = {2002},
     pages = {31-52},
     zbl = {0994.58006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-1-2}
}
Marek Izydorek; Krzysztof P. Rybakowski. On the Conley index in Hilbert spaces in the absence of uniqueness. Fundamenta Mathematicae, Tome 173 (2002) pp. 31-52. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm171-1-2/