Ordered group invariants for one-dimensional spaces
Inhyeop Yi
Fundamenta Mathematicae, Tome 167 (2001), p. 267-286 / Harvested from The Polish Digital Mathematics Library

We show that the Bruschlinsky group with the winding order is a homomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then the Bruschlinsky group with the winding order of the inverse limit space is a dimension group and is a quotient of the dimension group with the standard order of the adjacency matrices associated with the presentation.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:283029
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-3-5,
     author = {Inhyeop Yi},
     title = {Ordered group invariants for one-dimensional spaces},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {267-286},
     zbl = {0983.37012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-3-5}
}
Inhyeop Yi. Ordered group invariants for one-dimensional spaces. Fundamenta Mathematicae, Tome 167 (2001) pp. 267-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-3-5/