m-normal theories
Ludomir Newelski
Fundamenta Mathematicae, Tome 167 (2001), p. 141-163 / Harvested from The Polish Digital Mathematics Library

Originally, m-independence, ℳ -rank, m-stability and m-normality were defined only for small stable theories. Here we extend the definitions to an arbitrary small countable complete theory. Then we investigate these notions in the new, broader context. As a consequence we show that any superstable theory with <2 countable models is m-normal. In particular, any *-algebraic group interpretable in such a theory is abelian-by-finite.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282000
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-9,
     author = {Ludomir Newelski},
     title = {m-normal theories},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {141-163},
     zbl = {0996.03026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-9}
}
Ludomir Newelski. m-normal theories. Fundamenta Mathematicae, Tome 167 (2001) pp. 141-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-9/