On the weak pigeonhole principle
Jan Krajíček
Fundamenta Mathematicae, Tome 167 (2001), p. 123-140 / Harvested from The Polish Digital Mathematics Library

We investigate the proof complexity, in (extensions of) resolution and in bounded arithmetic, of the weak pigeonhole principle and of the Ramsey theorem. In particular, we link the proof complexities of these two principles. Further we give lower bounds to the width of resolution proofs and to the size of (extensions of) tree-like resolution proofs of the Ramsey theorem. We establish a connection between provability of WPHP in fragments of bounded arithmetic and cryptographic assumptions (the existence of one-way functions). In particular, we show that functions violating WPHP2n are one-way and, on the other hand, one-way permutations give rise to functions violating PHPn+1, and strongly collision-free families of hash functions give rise to functions violating WPHP2n (all in suitable models of bounded arithmetic). Further we formulate a few problems and conjectures; in particular, on the structured PHP (introduced here) and on the unrelativised WPHP.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282141
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-8,
     author = {Jan Kraj\'\i \v cek},
     title = {On the weak pigeonhole principle},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {123-140},
     zbl = {0987.03051},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-8}
}
Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, Tome 167 (2001) pp. 123-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-8/