If n, t are natural numbers, μ is an infinite cardinal, G is an n-chromatic graph of cardinality at most μ, then there is a graph X with , |X| = μ⁺, such that every subgraph of X of cardinality < t is n-colorable.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-7, author = {Peter Komj\'ath}, title = {A Ramsey-style extension of a theorem of Erd\H os and Hajnal}, journal = {Fundamenta Mathematicae}, volume = {167}, year = {2001}, pages = {119-122}, zbl = {0994.05147}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-7} }
Peter Komjáth. A Ramsey-style extension of a theorem of Erdős and Hajnal. Fundamenta Mathematicae, Tome 167 (2001) pp. 119-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-7/