A Ramsey-style extension of a theorem of Erdős and Hajnal
Peter Komjáth
Fundamenta Mathematicae, Tome 167 (2001), p. 119-122 / Harvested from The Polish Digital Mathematics Library

If n, t are natural numbers, μ is an infinite cardinal, G is an n-chromatic graph of cardinality at most μ, then there is a graph X with X(G)¹μ, |X| = μ⁺, such that every subgraph of X of cardinality < t is n-colorable.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282179
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-7,
     author = {Peter Komj\'ath},
     title = {A Ramsey-style extension of a theorem of Erd\H os and Hajnal},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {119-122},
     zbl = {0994.05147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-7}
}
Peter Komjáth. A Ramsey-style extension of a theorem of Erdős and Hajnal. Fundamenta Mathematicae, Tome 167 (2001) pp. 119-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-7/