We continue the work of [2] and prove that for λ successor, a λ-categorical theory T in is μ-categorical for every μ ≤ λ which is above the -beth cardinal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-10, author = {Saharon Shelah}, title = {Categoricity of theories in $L\_{$\kappa$*,$\omega$}$, when $\kappa$* is a measurable cardinal. Part 2}, journal = {Fundamenta Mathematicae}, volume = {167}, year = {2001}, pages = {165-196}, zbl = {0994.03029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-10} }
Saharon Shelah. Categoricity of theories in $L_{κ*,ω}$, when κ* is a measurable cardinal. Part 2. Fundamenta Mathematicae, Tome 167 (2001) pp. 165-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-10/