Categoricity of theories in Lκ*,ω, when κ* is a measurable cardinal. Part 2
Saharon Shelah
Fundamenta Mathematicae, Tome 167 (2001), p. 165-196 / Harvested from The Polish Digital Mathematics Library

We continue the work of [2] and prove that for λ successor, a λ-categorical theory T in Lκ*,ω is μ-categorical for every μ ≤ λ which is above the (2LS(T))-beth cardinal.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:282574
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-10,
     author = {Saharon Shelah},
     title = {Categoricity of theories in $L\_{$\kappa$*,$\omega$}$, when $\kappa$* is a measurable cardinal. Part 2},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {165-196},
     zbl = {0994.03029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-10}
}
Saharon Shelah. Categoricity of theories in $L_{κ*,ω}$, when κ* is a measurable cardinal. Part 2. Fundamenta Mathematicae, Tome 167 (2001) pp. 165-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-10/