Constructing ω-stable structures: Computing rank
John T. Baldwin ; Kitty Holland
Fundamenta Mathematicae, Tome 167 (2001), p. 1-20 / Harvested from The Polish Digital Mathematics Library

This is a sequel to [1]. Here we give careful attention to the difficulties of calculating Morley and U-rank of the infinite rank ω-stable theories constructed by variants of Hrushovski's methods. Sample result: For every k < ω, there is an ω-stable expansion of any algebraically closed field which has Morley rank ω × k. We include a corrected proof of the lemma in [1] establishing that the generic model is ω-saturated in the rank 2 case.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:281785
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-1,
     author = {John T. Baldwin and Kitty Holland},
     title = {Constructing $\omega$-stable structures: Computing rank},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {1-20},
     zbl = {0994.03030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-1}
}
John T. Baldwin; Kitty Holland. Constructing ω-stable structures: Computing rank. Fundamenta Mathematicae, Tome 167 (2001) pp. 1-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm170-1-1/