G-functors, G-posets and homotopy decompositions of G-spaces
Stefan Jackowski ; Jolanta Słomińska
Fundamenta Mathematicae, Tome 167 (2001), p. 249-287 / Harvested from The Polish Digital Mathematics Library

We describe a unifying approach to a variety of homotopy decompositions of classifying spaces, mainly of finite groups. For a group G acting on a poset W and an isotropy presheaf d:W → (G) we construct a natural G-map hocolimdG/d(-)|W| which is a (non-equivariant) homotopy equivalence, hence hocolimdEG×GFdEG×G|W| is a homotopy equivalence. Different choices of G-posets and isotropy presheaves on them lead to homotopy decompositions of classifying spaces. We analyze higher limits over the categories associated to isotropy presheaves d; in some important cases they vanish in dimensions greater than the length of W and can be explicitly calculated in low dimensions. We prove a cofinality theorem for functors F: → (G) into the category of G-orbits which guarantees that the associated map αF:hocolimEG×GF(-)BG is a mod-p-homology decomposition.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:281643
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-3-4,
     author = {Stefan Jackowski and Jolanta S\l omi\'nska},
     title = {G-functors, G-posets and homotopy decompositions of G-spaces},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {249-287},
     zbl = {0985.55012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-3-4}
}
Stefan Jackowski; Jolanta Słomińska. G-functors, G-posets and homotopy decompositions of G-spaces. Fundamenta Mathematicae, Tome 167 (2001) pp. 249-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-3-4/