On the number of countable models of stable theories
Predrag Tanović
Fundamenta Mathematicae, Tome 167 (2001), p. 139-144 / Harvested from The Polish Digital Mathematics Library

We prove: Theorem. If T is a countable, complete, stable, first-order theory having an infinite set of constants with different interpretations, then I(T,ℵ₀) ≥ ℵ₀.

Publié le : 2001-01-01
EUDML-ID : urn:eudml:doc:281817
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-3,
     author = {Predrag Tanovi\'c},
     title = {On the number of countable models of stable theories},
     journal = {Fundamenta Mathematicae},
     volume = {167},
     year = {2001},
     pages = {139-144},
     zbl = {0985.03022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-3}
}
Predrag Tanović. On the number of countable models of stable theories. Fundamenta Mathematicae, Tome 167 (2001) pp. 139-144. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm169-2-3/